I am trying to connect a DB25 male cable to a DB26 male receptable. Seems that there are no out of the box adapters available for this, so will have to solder my own. Having trouble and a lot of confusion on how to make the correct connections, so that's why I'm basically looking for a correct wiring diagram. The pinout of the DB-9 connector can be confusing when cabling an RS232 line. There are a lot of details to consider when arranging the pins between Male and Female connectors on a serial cable or serial device. The two main things to be concerned about are the pinout and the gender.
The 25-pair color code, originally known as even-count color code,[1] is a color code used to identify individual conductors in twisted-pairwiring for telecommunications.
Color coding[edit]
CERRXIAN DB25 Breakout Board, DB25 Female D-SUB Connector to DB25 Screw Wiring Solderless Terminal Module Breakout PCB Board Kits with Plastic Case (F Black) 4.3 out of 5 stars 24 $9.84. A 10Base-T Cross-over swaps TD and RD.That is, swap pins 1 and 3 as well as pins 2 and 6, on one end of the cable. AT&T 258A wiring is comparable to T568B.
With the development of new generations of telecommunication cables with polyethylene-insulated conductors (PIC) by Bell Laboratories for the Bell System in the 1950s, new methods were developed to mark each individual conductor in cables.[2] Each wire was identified by the combination of two colors, one of which is the major color, and the second the minor color. Major and minor colors are chosen from two different groups, resulting in 25 color combinations. The color combinations are applied to the insulation that covers each conductor. Typically, one color was a prominent background color of the insulation, and the other was a tracer, consisting of stripes, rings, or dots, applied over the background. The background color always matches the tracer color of its paired conductor, and vice versa.
The major, or primary group of colors consists of the sequence of white, red, black, yellow, and violet. The minor, or secondary color was chosen from the sequence blue, orange, green, brown, and slate.[3][4]
Pair no. | Major color | Minor color | ||
---|---|---|---|---|
1 | White | Blue | ||
2 | Orange | |||
3 | Green | |||
4 | Brown | |||
5 | Slate | |||
6 | Red | Blue | ||
7 | Orange | |||
8 | Green | |||
9 | Brown | |||
10 | Slate | |||
11 | Black | Blue | ||
12 | Orange | |||
13 | Green | |||
14 | Brown | |||
15 | Slate | |||
16 | Yellow | Blue | ||
17 | Orange | |||
18 | Green | |||
19 | Brown | |||
20 | Slate | |||
21 | Violet | Blue | ||
22 | Orange | |||
23 | Green | |||
24 | Brown | |||
25 | Slate |
The wire pairs are referred to either directly by their color combination, or by the pair number. For example, pair 9 is also called the red-brown pair. In technical tabulations, the colors are often suitably abbreviated.
Violet is the standard name in the telecommunications and electronics industry, but it is sometimes referred to as purple. Similarly, slate is a particular shade of gray. The names of most of the colors were taken from the conventional colors of the rainbow or optical spectrum, and in the electronic color code, which uses the same ten colors, albeit in a different order.[citation needed]
When used for POTS, the first wire is known as the tip or A-leg (U.K.) conductor and is usually connected to the positive side of a direct current (DC) circuit, while the second wire is known as the ring lead or B-leg (U.K.), and is connected to the negative side of the circuit. Neither of these two sides of the line has a connection to the local ground. This creates a balanced audio circuit with common-mode rejection, also known as a differential pair. The tip and ring convention is based on the 1⁄4″ (6.5 mm) TRS phone connectors, which were employed in telephone switchboards in the 19th and 20th centuries, where the tip contact of the connector is separated from the ring contact by a spacer of insulation. The connection furthest from the cable is known as the tip, the middle connection is the ring, and the (largest) connection closest to the wire is the sleeve.
Older Bell System wiring inside customer premises used 4-conductor untwisted wire cable. The 4 conductors were solid red, green, yellow & black wires. They match to the current 25-color code as follows:
green ('Line 1' tip) | white/blue |
red ('Line 1' ring) | blue/white |
black ('Line 2' tip) | white/orange |
yellow ('Line 2' ring) | orange/white |
25-pair telco cable pinout[edit]
A common application of the 25-pair color code is the cabling for the Registered Jack interface RJ21, which uses a female 50-pin miniature ribbon connector, as shown in the following table. The geometry of the pins of the receptacle (right hand image) corresponds to the pin numbers of the table. The left column of pins are the ring (R) conductors, while all tip (T) conductors are on the right.
Color (minor/major) | (R) | (T) | Color (major/minor) | The corresponding pin order in the female RJ21 connector |
---|---|---|---|---|
Pin No. | ||||
blue/white | 1 | 26 | white/blue | |
orange/white | 2 | 27 | white/orange | |
green/white | 3 | 28 | white/green | |
brown/white | 4 | 29 | white/brown | |
slate/white | 5 | 30 | white/slate | |
blue/red | 6 | 31 | red/blue | |
orange/red | 7 | 32 | red/orange | |
green/red | 8 | 33 | red/green | |
brown/red | 9 | 34 | red/brown | |
slate/red | 10 | 35 | red/slate | |
blue/black | 11 | 36 | black/blue | |
orange/black | 12 | 37 | black/orange | |
green/black | 13 | 38 | black/green | |
brown/black | 14 | 39 | black/brown | |
slate/black | 15 | 40 | black/slate | |
blue/yellow | 16 | 41 | yellow/blue | |
orange/yellow | 17 | 42 | yellow/orange | |
green/yellow | 18 | 43 | yellow/green | |
brown/yellow | 19 | 44 | yellow/brown | |
slate/yellow | 20 | 45 | yellow/slate | |
blue/violet | 21 | 46 | violet/blue | |
orange/violet | 22 | 47 | violet/orange | |
green/violet | 23 | 48 | violet/green | |
brown/violet | 24 | 49 | violet/brown | |
slate/violet | 25 | 50 | violet/slate |
Larger cables[edit]
For cables with more than 25 pairs, each group of 25 is called a binder group. The binder groups are marked with mylar ribbons using the same color coding system, starting with a white/blue ribbon, then a white/orange ribbon, and so on. The 24th binder group has a violet/brown ribbon, completing a super binder of 600 pairs.[3][4]
In cables of more than 600 pairs, each of the 600-pair binder group bundles is wrapped with a mylar binder ribbon, or string, matching the 'tip' colors of the color code, starting with white. The pattern then starts over with the first 25-pair group as white/blue, and continues indefinitely, in multiples of 600 pairs or parts thereof. For example, a 900-pair cable has the first 600 pairs in 24 groups of 25 pairs in a white binder, and the remaining 300 pairs in 12 groups of 25 pairs wrapped in a red binder.[3][4]
Some cables are 'mirrored' or 'clocked' with a pattern that is known throughout the telephone industry. Starting with the first binder group in the center, the technician counts the cable's groups in a spiral direction depending on the location of the central office or switch. If looking at the cable's core and the switch is in that direction, the groups are counted counter-clockwise. If the cable is the field side, the count is clockwise. There are indicators on the mylar ribbons to know where to begin for each layer and a diagram for the different cable sizes should be readily available for reference.[3][4]
Other color schemes are sometimes used for outdoor cables, particularly outside the U.S., but this color code is common for aerial and underground cables up to several thousand pairs in North America. In the UK, the British Post Office (later BT) used this color code for what is now known loosely as CW1308 specification cables, referring to the Post Office's 'Cable and Wire' specification No. 1308.
Extra pairs and colors[edit]
When working on aerial cable splicing and installation, it is common to use a telephone lineman's set or 'Butt Set' to communicate over long distances. To facilitate this, extra pairs of wires are embedded in cables. One extra pair (Red-White) may be embedded into cables that are 6 to 75 pairs; two pairs (Red-White and Black-White) may be encapsulated in cables of 100 to 300 pairs; and three pairs (Red-White, Black-White, and Yellow-White) may be included in cables of 400 to 900 pairs.[4] These extra pairs are often referred to as 'talk pairs', and are never used to deliver dial tone.
Optical fiber cables use a twelve-color code, where the first ten are the same as in the 25-pair color code, and the last two are Rose and Aqua.[5]
Memorizing the colors[edit]
Various mnemonics have been used to remember the color coding of the major color groups and the minor color groups:
Db25 Pinout Colors Chart
Why Run Backwards, You'll Vomit - White-Red-Black-Yellow-Violet[6]
Bell Operators Give Better Service - Blue-Orange-Green-Brown-Slate[7]
See also[edit]
References[edit]
Db25 Male Pinout
- ^AT&T, Bell System Practices, Section 461-200-101 Issue 7, Connector Cables—Identification (May 1979)
- ^F.W. Horn, Even-Count Cable, Bell Laboratories Record 37(6), 208 (June 1959)
- ^ abcdHighhouse, John (1997). A Guide for Telecommunications Cable Splicing. Cengage Learning. ISBN9780827380660.
- ^ abcdeAmerican Telephone And Telegraph Company (February 1959). Even PIC Cables(PDF). Bell System Practices – Outside Plant Construction and Maintenance, Section G50.607.3 Issue 2.
- ^Color for Fiber Optic Cables
- ^Abruzzino, James: Communications Cabling (2E), page 187. CNC Press, 2000
- ^
Wikimedia Commons has media related to Color code. |
Db9 To Db25 Pinout
Db25 Pinout Colors List
Please do not make requests for copies of radio programming software which is sold (or was sold) by the manufacturer for any monetary value. All requests will be deleted and a forum infraction issued. Making a request such as this is attempting to engage in software piracy and this forum cannot be involved or associated with this activity. The same goes for any private transaction via Private Message. Even if you attempt to engage in this activity in PM's we will still enforce the forum rules. Your PM's are not private and the administration has the right to read them if there's a hint to criminal activity.
If you are having trouble legally obtaining software please state so. We do not want any hurt feelings when your vague post is mistaken for a free request. It is YOUR responsibility to properly word your request.
To obtain Motorola software see the Sticky in the Motorola forum.
The various other vendors often permit their dealers to sell the software online (i.e., Kenwood). Please use Google or some other search engine to find a dealer that sells the software. Typically each series or individual radio requires its own software package. Often the Kenwood software is less than $100 so don't be a cheapskate; just purchase it.
For M/A Com/Harris/GE, etc: there are two software packages that program all current and past radios. One package is for conventional programming and the other for trunked programming. The trunked package is in upwards of $2,500. The conventional package is more reasonable though is still several hundred dollars. The benefit is you do not need multiple versions for each radio (unlike Motorola).
This is a large and very visible forum. We cannot jeopardize the ability to provide the RadioReference services by allowing this activity to occur. Please respect this.